Poster #2531 Presented at ASCO<sup>®</sup> May 31- June 4, 2024 Chicago, IL

# A Phase I monotherapy dose escalation study of HFB301001, a novel next-generation OX40 agonist monoclonal antibody, in adult patients with advanced solid tumors

<sup>1</sup>University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA; <sup>2</sup>Vall d'Hebron Institute of Oncology, Barcelona, Spain; <sup>4</sup>Dana Farber Cancer Institute, Boston, MA; <sup>5</sup>Mayo Clinic, Jacksonville, FL; <sup>6</sup>Mayo Clinic, Scottsdale, AZ; <sup>7</sup>Mayo Clinic, Rochester MN; <sup>8</sup>University of Maryland, Greenbaum Comprehensive Cancer Center, Baltimore, MD; <sup>9</sup>Hospital Universitario 12 de Octubre, Madrid, Spain; <sup>10</sup>HiFiBiO Therapeutics, Cambridge, MA USA

# BACKGROUND

- Next-generation OX40 agonist antibodies demonstrated promising preclinical activity but had limited clinical impact, likely due to their pharmacological properties. These properties include:
- competitive blocking of natural OX40-OX40L interactions
- decreased surface expression of OX40 on CD4+ T cells • HFB301001 overcomes these limitations by binding to a unique, non-competing epitope, thus preserving the OX40/OX40L
- interaction. Moreover, HFB301001 does not decrease OX40 surface levels upon co-stimulation.
- In preclinical studies, HFB301001 demonstrated superior in vivo anti-tumor activity compared to benchmark first generation OX40 agonists.
- To enhance the probability of clinical success, we used our Drug Intelligence Science (DIS<sup>®</sup>) platform to select tumor types most likely to respond, based on target biology and single-cell insights from patient-derived refractory tumors.
- Here, we present the initial data of the ongoing dose-escalation Phase I trial of HFB301001 in patients with advanced solid tumors (NCT05229601).

## ■ ■ Isotype control (IgG1) 0.1 1 10 100 1000 Concentration (nM)

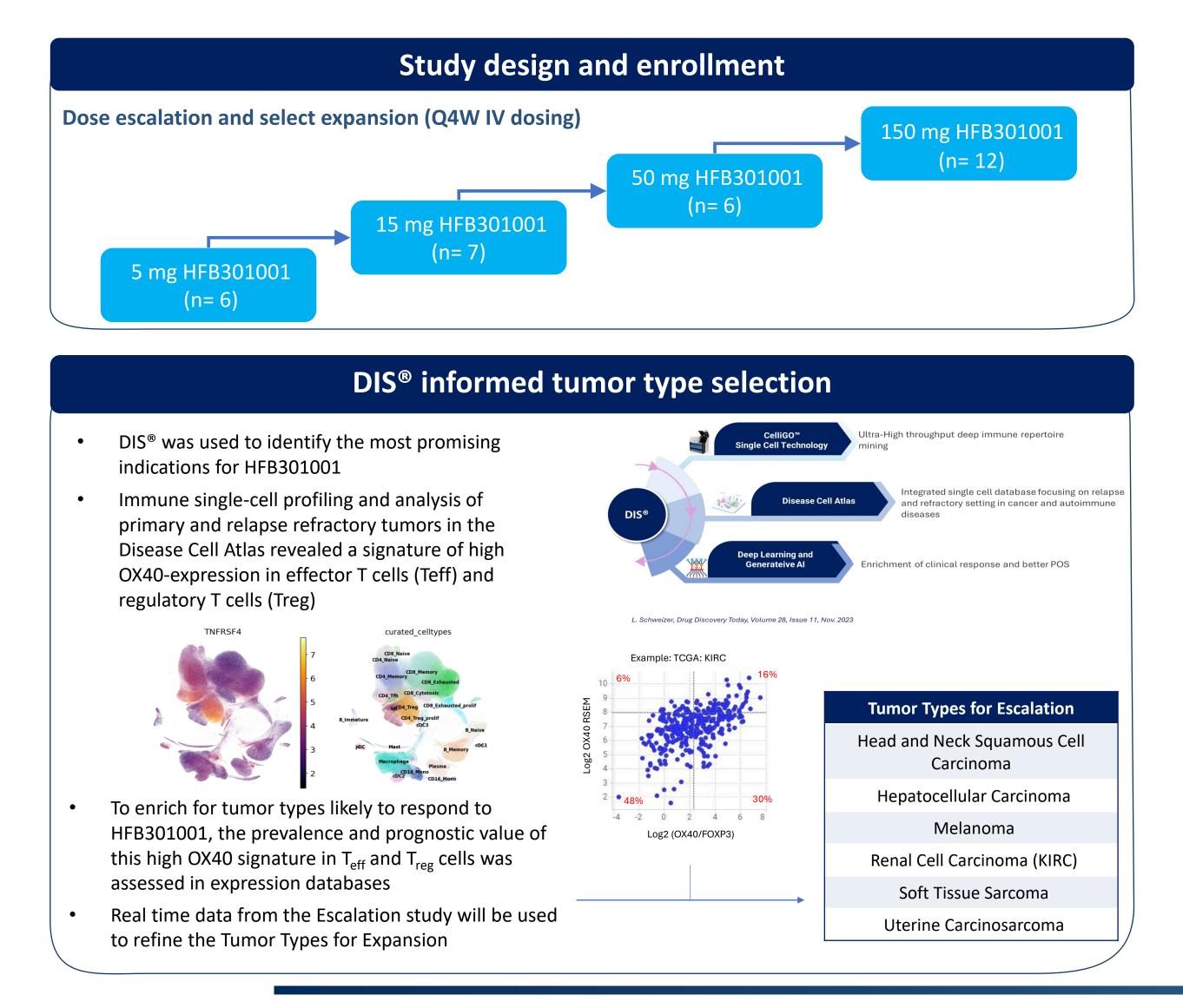
# **OBJECTIVES and STUDY DESIGN**

#### **Primary objectives**

Safety and tolerability of monotherapy HFB301001

#### Secondary objectives

- Assess PK, PD, and immunogenicity of HFB301001 • Determine biologically active dose(s) and
- preliminary anti-tumor efficacy of HFB301001 • Establish RDE and RP2D
- Examine preliminary anti-tumor efficacy, ORR using RECIST 1.1 and iRECIST


#### **Exploratory objectives**

- Establish Proof of Mechanism (POM) in paired tumor biopsies and peripheral blood
- Generate biomarker hypothesis for patient enrichment

#### Key eligibility criteria

- Adult patients with advanced or metastatic solid tumors. Tumor types included:
- soft tissue sarcoma (STS) renal cell carcinoma (RCC)
- hepatocellular carcinoma (HCC)
- cutaneous melanoma head and neck squamous cell carcinoma
- (HNSCC) uterine carcinosarcoma (UCS)
- Measurable disease based on RECIST 1.1
- ECOG PS 0-1
- Patient must have exhausted standard lines of systemic therapy\*

\*Other protocol-defined inclusion criteria may apply



HFB301001 epitope

OX40L signaling<sup>\*</sup>

0.1 1 10 100 1000 Concentration of Antibody (nM)

<sup>6</sup> OX40L (10 nM) signaling in the presence non-crosslinked OX40 agonistic mAbs

Benchmark

Benchmark 2 Benchmark 3

Benchmark 4

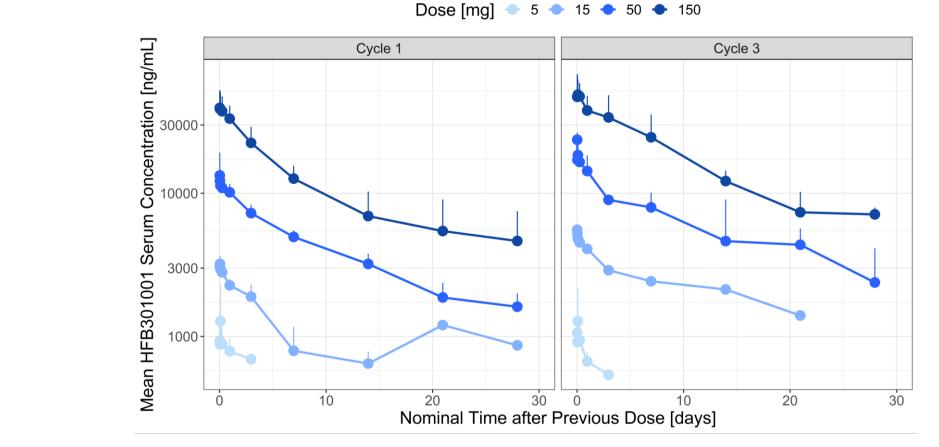
OX40 levels on CD4 T cells upon Ab treatment

Anthony El-Khoueiry<sup>1</sup>, Elena Garralda Cabanas<sup>2</sup>, Andres Cervantes<sup>3</sup>, Candace Haddox<sup>4</sup>, Hani Babiker<sup>5</sup>, Mitesh Borad<sup>6</sup>, Konstantinos Leventakos<sup>7</sup>, Ranee Mehra<sup>8</sup>, Jon Zugazagoitia<sup>9</sup>, Diana Hanna<sup>1</sup>, Guzman Alonso<sup>2</sup>, Angela Liu<sup>10</sup>, Xiaorong Shi<sup>10</sup>, Jack Russella-Pollard<sup>10</sup>, Gabrielle Wong<sup>10</sup>, William Hedrich<sup>10</sup>, Xi Lin<sup>10</sup>, John Pallante<sup>10</sup>, Robert H.I. Andtbacka<sup>10</sup>

## **RESULTS**

**Baseline demographics and clinical characteristics** 

| Dose escalation / expansion (Q4W IV dosing, n=31)             |                |  |  |
|---------------------------------------------------------------|----------------|--|--|
| Median age (range), yrs                                       | 62 (41-78)     |  |  |
| Sex, n (%)                                                    |                |  |  |
| Women                                                         | 7 (23)         |  |  |
| Men                                                           | 24 (77)        |  |  |
| ECOG PS, n (%)                                                |                |  |  |
| 0                                                             | 9 (29)         |  |  |
| 1                                                             | 22 (71)        |  |  |
| Median time from initial diagnosis to first dose (range), yrs | 3.9 (1.2-11.9) |  |  |
| Number of prior systemic cancer therapy regimens, n (%)       |                |  |  |
| Median (range)                                                | 2 (1-4)        |  |  |
| 1                                                             | 6 (19)         |  |  |
| 2                                                             | 12 (39)        |  |  |
| ≥3                                                            | 13 (42)        |  |  |
| Received prior anti-PD-(L)1 therapy, n (%)                    |                |  |  |
| Yes                                                           | 26 (84)        |  |  |
| No                                                            | 5 (16)         |  |  |
| Median time on treatment, months (range)                      | 1.9 (0.9-17.0) |  |  |
| Tumor Types, n (%)                                            |                |  |  |
| Renal cell carcinoma                                          | 11 (35)        |  |  |
| Hepatocellular carcinoma                                      | 8 (26)         |  |  |
| Melanoma                                                      | 5 (16)         |  |  |
| Soft tissue sarcoma                                           | 3 (10)         |  |  |
| Head and neck squamous cell carcinoma                         | 2 (6)          |  |  |
| Uterine carcinosarcoma                                        | 2 (6)          |  |  |


### HFB301001 was well-tolerated with no DLTs and no ≥ grade 3 TRAEs

- As of April 2024, Treatment-related adverse events (TRAEs) occurred in 12 patients (39%), none ≥ Grade 3 • The most common TRAEs included rash (16.1%) and amylase increased (9.7%)
- There were no TRAEs leading to treatment discontinuation. No dose-limiting toxicities were observed.

| Treatment-related adverse events (TRAE), (n=31) |                     |                  |                  |                  |
|-------------------------------------------------|---------------------|------------------|------------------|------------------|
| Adverse event                                   | All grades<br>n (%) | Grade 1<br>n (%) | Grade 2<br>n (%) | Grade 3<br>n (%) |
| Rash                                            | 5 (16.1)            | 5 (16.1)         | -                | -                |
| Amylase increased                               | 3 (9.7)             | 1 (3.2)          | 2 (6.5)          | -                |
| Arthralgia                                      | 2 (6.5)             | 2 (6.5)          | -                | -                |
| Lipase increased                                | 2 (6.5)             | -                | 2 (6.5)          | -                |
| Pruritus                                        | 2 (6.5)             | 1 (3.2)          | 1 (3.2)          | -                |
| Abdominal pain                                  | 1 (3.2)             | -                | 1 (3.2)          | -                |
| Anemia                                          | 1 (3.2)             | 1 (3.2)          | -                | -                |
| Angioedema                                      | 1 (3.2)             | -                | 1 (3.2)          | -                |
| CPK increased                                   | 1 (3.2)             | 1 (3.2)          | -                | -                |
| Decreased appetite                              | 1 (3.2)             | 1 (3.2)          | -                | -                |
| Dysgeusia                                       | 1 (3.2)             | 1 (3.2)          | -                | -                |
| Edema - facial                                  | 1 (3.2)             | 1 (3.2)          | -                | -                |
| Edema - peripheral                              | 1 (3.2)             | 1 (3.2)          | -                | -                |
| Fatigue                                         | 1 (3.2)             | 1 (3.2)          | -                | -                |
| Hyperglycemia                                   | 1 (3.2)             | -                | 1 (3.2)          | -                |
| Infusion related reaction                       | 1 (3.2)             | -                | 1 (3.2)          | -                |
| Mucosal inflammation                            | 1 (3.2)             | 1 (3.2)          | -                | -                |
| Muscle weakness lower limb                      | 1 (3.2)             | 1 (3.2)          | -                | -                |
| Nail ridging                                    | 1 (3.2)             | 1 (3.2)          | -                | -                |
| Nausea                                          | 1 (3.2)             | 1 (3.2)          | -                | -                |
| Neutrophil count decreased                      | 1 (3.2)             | -                | 1 (3.2)          | -                |
| Sore throat                                     | 1 (3.2)             | 1 (3.2)          | -                | -                |
| Vomiting                                        | 1 (3.2)             | 1 (3.2)          | -                | -                |

## **Dose-proportional PK**

- Small distribution volume, low clearance, and long half-life with mild TMDD effects
- Accumulation observed over multiple Q4W doses of 15 mg and greater





- HFB301001 demonstrated good disease control in heavily pre-treated HCC and RCC tumors that were refractory to anti-VEGF and/or anti-PD-(L)1 therapies. Preclinical studies have these specific tumors.
- considered include checkpoint inhibitors and VEGF inhibitors, which have a strong biological rationale for improving clinical outcomes when combined with OX40 agonism.

| Cutaneous melanoma                                                            | Key findings                                                                                                                                                                                                                        |  |  |  |
|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| HCC<br>HNSCC<br>RCC<br>STS<br>UCS                                             | <ul> <li>55% overall disease control rate (DCR)* observed in advanced<br/>solid tumors as assessed by iRECIST</li> </ul>                                                                                                            |  |  |  |
| Prior anti-PD(L)1 therapy                                                     | • 55% DCR in RCC                                                                                                                                                                                                                    |  |  |  |
| <ul> <li>◆ 5 mg</li> <li>■ 15 mg</li> <li>× 50 mg</li> <li>▽150 mg</li> </ul> | <ul> <li>3 median prior lines of therapy (range 3-4)</li> <li>All were TKI and anti-PD-(L1) refractory tumors</li> <li>Of the 11 evaluable RCC patients, 1 patient had stable disease with tumor shrinkage for 17 months</li> </ul> |  |  |  |
| $\nabla$ $\nabla$ $\blacklozenge$                                             | • 50% DCR in HCC                                                                                                                                                                                                                    |  |  |  |
|                                                                               | <ul> <li>2 median prior lines of therapy (range 1-2)</li> <li>All were anti-VEGF and anti-PD-(L)1 refractory tumors</li> <li>Median Time on Treatment 1.8 mo (range 1 – 3.7 mo)</li> </ul>                                          |  |  |  |
| · • • • • • • • • •                                                           | <ul> <li>The 5 and 15 mg doses, median Time on Treatment 3.2 mo,<br/>with 1 subject still on treatment &gt;4 mo</li> </ul>                                                                                                          |  |  |  |
|                                                                               | * DCR – Includes stable disease, partial and complete response                                                                                                                                                                      |  |  |  |

indicated potential synergism between anti-VEGF therapy and OX40 agonism. Therefore, combining HFB301001 with anti-VEGF and/or anti-PD-(L)1 therapies may offer clinical benefit in

• We are actively exploring a combination strategy for HFB301001 targeting specific tumor types, such as HCC and RCC, where its mechanism of action is observed. Potential partners being