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The emergence of resistance to chemotherapy and targeted 
therapies is a major challenge for the treatment of cancer. 
Deep sequencing and single-cell approaches have highlighted 

the importance of genetic intra-tumor heterogeneity in tumor evo-
lution1–3, and shown that genetic heterogeneity within untreated 
tumors is a key factor in tumor resistance4. However, in many cases 
genetic mechanisms driving resistance have not been found, point-
ing to a role for non-genetic mechanisms5–7. Transcriptional and 
epigenetic mechanisms are anticipated to play a role in the adap-
tation of cancer cells confronted with environmental, metabolic or 
therapy-related stresses8,9. Recent studies, using single-cell RNA 
sequencing (scRNA-seq), indicate that emergence of transcriptional 
subclones on treatment may account for the adaptation of cancer 
cells to therapeutic pressure9,10. In contrast, only a few studies have 
tracked the clonal evolution of epigenetic alterations, analyzing 
DNA methylation at the population level11,12, suggesting that DNA 
methylation alterations and genetic mutations can share a common 
evolutionary track11. Recently developed approaches for single-cell 
methylome profiling13,14 might also help explore the complexity 
of DNA methylation in tumors. Single-cell assay for transposase-
accessible chromatin using sequencing (ATAC-seq) has recently 
enabled the detailed characterization of open chromatin states 
in vivo, in Drosophila and human embryos15,16, but unlike chroma-
tin immunoprecipitation followed by sequencing (ChIP-seq), such 
approaches do not fully capture the diversity of chromatin states 
found in the human genome17,18. For example, unlike ATAC-seq, 
ChIP-seq can capture repressive as well as active chromatin states. 
However, until now, insufficient coverage has limited the applica-
tions of single-cell chromatin profiling with ChIP-seq19, preventing 

the study of the heterogeneity of chromatin states in complex bio-
logical systems such as tumors.

To explore intra-tumor heterogeneity of chromatin states, we 
developed a droplet microfluidics single-cell chromatin immuno-
precipitation followed by sequencing (scChIP-seq) approach to 
profile chromatin landscapes of thousands of cells at single-cell 
resolution with a coverage of up to 10,000 loci per cell. Using cell 
lines, we show that our approach can reveal cell identities from 
single-cell chromatin landscapes with high accuracy, and identify 
discriminating chromatin features, either permissive (H3K4me3) or 
repressive (H3K27me3) for transcription, between groups of single 
cells. Applying our methodology to breast cancer patient-derived 
xenograft (PDX) samples, we characterize the diversity of chroma-
tin landscapes within stromal and tumor cell populations. Notably, 
when comparing pairs of sensitive and resistant PDXs, we show that 
a fraction of cells in untreated, drug-sensitive tumors display the 
same H3K27me3 chromatin landscape as resistant cells, revealing a 
facet of tumor heterogeneity at the level of chromatin features.

Results
Droplet microfluidics workflow for scChIP-seq. To study the 
intra-tumor heterogeneity of chromatin states, we developed a 
high-throughput scChIP-seq approach that combines droplet 
microfluidics with single-cell DNA barcoding technologies (Fig. 1a  
and Supplementary Figs. 1–4). We profiled histone post-transla-
tional modifications, from chromatin states that are permissive 
(H3K4me3) or repressive (H3K27me3) for transcription, at single-
cell resolution with an average coverage of up to 10,000 unique loci 
per cell. The microfluidics workflow includes live monitoring of 
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droplets (Supplementary Fig. 5a,b), which enables, in three steps, 
the controlled production of 145 ± 10 pl droplets containing both 
nucleosomes from individual cells and a hydrogel bead carrying 
barcoded adapters (Fig. 1a and Supplementary Videos 1 and 2). The 
system allows coencapsulation of approximately 33% of the input 
number of cells with a single hydrogel bead, that is, typically 5,000 
cells out of 15,000 starting cells (Supplementary Fig. 5c). To confirm 
that barcodes were unique to a single cell, we performed an experi-
ment with a mixture of mouse and human cell lines, which showed 
that 97% of the barcodes were unambiguously assigned to a single 
species (Supplementary Fig. 6), which is consistent with the percent-
age of occupied droplets containing single cells (95%; see Methods).

Detection of single-cell chromatin landscapes in vitro. Next, we 
validated the efficiency and accuracy of the scChIP-seq procedure  

to recapitulate cell identity from the single-cell distribution of 
H3K4me3 and H3K27me3 modifications. Human Ramos (B cell) 
and Jurkat (T cell) cells were processed separately (as shown in Fig. 1a)  
by using two independent sets of barcoded adapters, and, after liga-
tion of the adapters in droplets, the barcoded nucleosomes were 
pooled and immunoprecipitated. For H3K4me3 and H3K27me3, we 
achieved an average coverage of 1,630 and 1,633 unique reads per cell, 
respectively, and a high correlation across technical and biological 
replicates (see Methods; Supplementary Fig. 7a–c, r = 0.96 and 0.98 
with P < 10−15, respectively), with no batch effect (Supplementary 
Fig. 7d,e). For both single-cell chromatin profiling experiments, we 
identified by consensus clustering two stable clusters correspond-
ing to each cell line (Fig. 1b and Supplementary Fig. 8a), matching 
cell identity with a specificity of over 99.7% and 99.5%, respectively, 
for the H3K4me3 and H3K27me3 profiles. Aggregated single-cell 
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Fig. 1 | Reconstructing cell-type-specific chromatin states from single-cell ChIP-seq profiles. a, Overview of the microfluidics scChIP-seq workflow 
(see Methods). b, t-SNE plots representing the H3K4me3 and H3K27me3 scChIP-seq datasets from human B and T lymphocytes separately indexed in 
droplets using hydrogel beads carrying both single-cell and cell-type-specific barcodes. The points are colored according to the cell-type-specific barcode 
sequence. Accuracy represents the agreement between the classification by consensus clustering of scChIP-seq data (Supplementary Fig. 8a) and known 
cell identity, assessed by the cell-type-specific barcodes. c, Snapshots of differentially enriched loci (Supplementary Fig. 8b) of bulk profiles along with 
cumulative single-cell profiles for each cell type. Differentially bound regions identified using a two-sided Wilcoxon signed-rank test are indicated in gray 
with the corresponding adjusted P values and log2 fold change (H3K4me3: n = 1,736 T cells and 839 B cells; H3K27me3: n = 1,481 T cells and 1,643 B cells). 
d, Scatterplots displaying log2 RPM (reads per million mapped reads) enrichments in cumulative single-cell versus bulk ChIP-seq data, calculated within 
5 kb genomic bins for H3K4me3 (n = 642,098 bins) and 50 kb for H3K27me3 (n = 64,455 genomic bins) (see Methods). Pearson’s correlation scores and 
P values were computed genome-wide.

NAtuRE GENEtICS | VOL 51 | JUNE 2019 | 1060–1066 | www.nature.com/naturegenetics 1061

http://www.nature.com/naturegenetics


Technical RepoRT NaTUre GeNeTics

profiles recapitulated the bulk ChIP-seq profiles with high accu-
racy (Fig. 1c,d, r = 0.93 and 0.97 with P < 10−15 for H3K4me3 and 
H3K27me3, respectively; Supplementary Fig. 7f). We could identify 
through differential analysis permissive and repressive chromatin 
features specific to Ramos and Jurkat cells (Supplementary Fig. 8b). 
Focusing on H3K4me3, which accumulates around transcription 
start sites (TSSs), we identified concordant lineage-specific sets of 
genes as being enriched among chromatin features specific to each 
cell line (Supplementary Fig. 8c). These results demonstrate that 
the scChIP-seq procedure is a robust method to detect chromatin 
features at the single-cell level, to classify single cells with a high 
accuracy according to their chromatin landscape and to identify 
discriminating chromatin features between cell populations.

Diversity of H3K27me3 landscapes in stromal cells in vivo. We 
then used scChIP-seq to interrogate the heterogeneity of chroma-
tin marks within a triple-negative breast tumor model of acquired 
resistance to chemotherapy. After two cycles of treatment of xeno-
graft derivatives from an individual patient, initially responsive to 
capecitabine20, we obtained a tumor with acquired resistance to 
capecitabine, HBCx-95-CapaR (Supplementary Fig. 9a). We pro-
filed the H3K27me3 landscape at single-cell resolution for both 

sensitive and resistant xenografts, HBCx-95 and HBCx-95-CapaR 
(Supplementary Fig. 9b), and also performed scRNA-seq to evaluate 
transcriptional heterogeneity within the same cell suspension (Fig. 2a).  
Cumulative single-cell chromatin profiles matched the bulk ChIP-
seq profiles (Supplementary Fig. 9c,d, r = 0.89 with P < 10−15).

We first studied the diversity of chromatin profiles within 
stromal cells (n = 1,766 mouse cells with an average coverage of 
3,535 unique reads per cell). Consensus clustering approaches 
(Supplementary Fig. 10) showed that stromal cells stably grouped in 
three chromatin-based populations according to H3K27me3 profil-
ing, Chrom_c1, Chrom_c2 and Chrom_c3, irrespectively of whether 
the PDX was sensitive or resistant to treatment (Fig. 2b), thus 
arguing against a potential batch effect. By comparing chromatin 
features between groups of cells (Supplementary Fig. 11), we iden-
tified loci with specific H3K27me3 enrichment for Chrom_c2 and 
Chrom_c3 populations (n = 1,581 and n = 1,282, respectively, with 
adjusted P < 0.01 and absolute log2 fold change > 1; Supplementary 
Table 1), and to a lesser extent for cluster Chrom_c1 (n = 122).

In parallel, scRNA-seq analysis identified four populations of 
stromal cells (Fig. 2c and Supplementary Fig. 12): two groups of 
cells of fibroblast origin (with the specific markers Col12a1 and 
Efemp1); endothelial cells (Pecam1); and macrophage cells (Ms4a7). 
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To further compare the identity of populations inferred from both 
approaches, we focused on genes with a TSS located within 1 kb of 
chromatin features specific to Chrom_c1, Chrom_c2 and Chrom_
c3. Loci specifically devoid of H3K27me3 in cells from Chrom_c2, 
that is, permissive for transcription only in Chrom_c2, were signif-
icantly enriched in genes involved in epithelial-to-mesenchymal 
transition (adjusted P = 2.8 × 10−3), such as Col4a1 (Supplementary 
Fig. 11b), or in apical junction (adjusted P = 9.0 × 10−2), such as 
Ptk2 (Fig. 2d), both signatures being characteristic of fibroblast  

expression programs. Similarly, we found loci devoid of 
H3K27me3 specific to Chrom_c3 enriched in genes from immune 
expression programs (adjusted P = 5.2 × 10−2; Supplementary  
Fig. 11a), such as Lrmp (Fig. 2e). The scRNA-seq data further con-
firmed the expression pattern of these markers within the PDX 
samples (right panels, Fig. 2d,e). We could not identify relevant 
genes associated to the few chromatin marks characteristic of 
Chrom_c1, either suggesting that these cells were less efficiently 
captured with our scChIP-seq procedure or that this cluster of cells 
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shared chromatin features with both Chrom_c2 and Chrom_c3. 
Indeed, half of the cells from this cluster share with immune-like 
cells H3K27me3 enrichment for Ptk2 (Fig. 2d). Altogether our 
scChIP-seq approach revealed the existence of three H3K27me3 
chromatin landscapes within mouse stromal cells, two of which 
matched the transcriptomic signatures identified with scRNA-seq 
(fibroblast and immune-like signatures).

Heterogeneity of chromatin landscapes in breast tumors. Next, we 
studied the heterogeneity of chromatin profiles among tumor cells 
from the same pair of triple-negative breast tumor samples (n = 4,331 
cells from HBCx-95 and HBCx-95-CapaR, with average cover-
age of 5,161 unique reads per cell). We removed from the analysis  

loci affected by copy number variations, as identified from bulk 
DNA profiles, to focus on chromatin alterations (Supplementary 
Fig. 13a). Based on both chromatin and transcriptomic profiles, 
cells clustered primarily according to their sensitive or resistant 
tumor origin (Fig. 3a–c and Supplementary Fig. 13b,c). While the 
chromatin profiles of sensitive cells were largely homogeneous, dis-
tinct chromatin states within the resistant population were appar-
ent (Fig. 3a), suggesting that heterogeneous populations of resistant 
cells, with distinct chromatin features, emerged. However, consen-
sus clustering also showed that 3% of cells from the untreated tumor 
(n = 13 out of 484) robustly classify with resistant cells (Fig. 3d, 
consensus score > 0.9), suggesting that they share common chro-
matin features. Resistant-like and resistant cells, corresponding to 
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Chrom_c2, displayed a high number of loci depleted in H3K27me3 
compared to sensitive cells from Chrom_c1 (Fig. 3e,f, n = 569 loci 
with depleted versus 114 with enriched H3K27me3, adjusted 
P < 0.01 and absolute log2 fold change > 1, 30% overlapping a TSS; 
Supplementary Table 2). Loci specifically devoid of H3K27me3 
in cells from Chrom_c2 were enriched in genes that are targets of 
the Polycomb complex (Supplementary Fig. 13d), indicating that 
we were observing a demethylation of expected enhancer of zeste 
homolog 2 targets. We could only detect transcription within 5% 
of these loci, either due to the absence of transcription or to insuf-
ficient sensitivity of the scRNA-seq procedure. Within these loci, six 
genes were significantly deregulated according to scRNA-seq, and 
all in accordance to their H3K27me3 chromatin states (Fig. 3f and 
Supplementary Fig. 13e). We also identified IGF2BP3, a gene known 
to promote resistance to chemotherapy21 (Fig. 3g) and regions with 
markers of epithelial-to-mesenchymal transition (COL4A2, HOXD 
cluster; Fig. 3h,i), which induces resistance to chemotherapy22,23.

Detection of a ‘resistant-like’ chromatin subclone in untreated 
tumor. In addition, we profiled a pair of luminal estrogen recep-
tor-positive breast PDXs: HBCx-22, responsive to tamoxifen; and 
HBCx-22-TamR, resistant to tamoxifen24. To obtain a high average 
coverage of 10,228 unique reads per cell, we limited the number of 
encapsulated cells (n = 822 tumor cells; Supplementary Fig. 14a,b). 
Tumor cells displayed two major chromatin profiles related to their 
tumor of origin. However, 16% (n = 41 out of 255) of cells within 
the sensitive tumor shared chromatin features with all resistant cells 
(Fig. 4a–c and Supplementary Fig. 14c). Thus, chromatin features 
characteristic of resistant cells were already found in rare cells from 
the sensitive tumor.

Differential analysis of chromatin features revealed that resis-
tant-like and resistant cells (Chrom_c2) have predominantly lost 
H3K27me3 marks compared to sensitive-like cells (Supplementary 
Fig. 14d; n = 356 loci with depleted versus 137 with enriched 
H3K27me3, Supplementary Table 3). Loci specifically devoid of 
H3K27me3 in cells from Chrom_c2 were enriched in gene targets 
of the Polycomb complex and genes of basal-like signatures of the 
mammary epithelium (Supplementary Fig. 14e). With scRNA-seq, 
we could only detect transcription in 2% of differentially enriched 
windows, and significant differential expression for three genes, all 
showing transcription activation in a fraction of resistant cells, mir-
roring their loss of H3K27me3 enrichment: EGFR, a gene implicated 
in resistance to tamoxifen25,26; IGFBP3; and ALCAM (Fig. 4d,h,i and 
Supplementary Fig. 14g).

Parallel scRNA-seq analysis of the same cell suspension iden-
tified several clusters within the resistant and sensitive tumor  
(Fig. 4e,f and Supplementary Fig. 14f). While no cells from the sensi-
tive tumor clustered with the resistant cells, we show that cells from the 
RNA_c6 cluster, originating from the sensitive tumor (correspond-
ing to 211 out of 1,275 cells (17%)), display activation of pathways 
characteristic of resistant tumor cells, among which basal-like gene 
signatures and signature of epithelial-to-mesenchymal transition  
(Fig. 4g). These observations independently suggest that non-genetic 
features common to resistant cells, either at the transcriptomic or 
chromatin level, are already found in cells from the sensitive tumor. 
Both single-cell measurements point toward the activation of basal-
like gene signatures, but through different sets of genes.

Discussion
Profiling histone modifications at the single-cell level with high 
coverage, up to 10,000 loci on average per cell, was instrumental to 
reveal the presence of relatively rare chromatin states within tumor 
samples. Our scChIP-seq approach enables the segmentation of cell 
populations solely based on their chromatin landscape, and the iden-
tification of key chromatin features of each subpopulation. Using 
this approach, we identified loci depleted for the transcriptional  

repressive mark H3K27me3 in a population of resistant and resis-
tant-like cells, including genes known to promote resistance to 
chemotherapy or targeted therapy, highlighting the potential to 
discover new drug targets and biomarkers for patient stratifica-
tion. Notably, both models share the H3K27 demethylation, and 
transcription activation of a gene of the IGFBP family, in the insu-
lin-like growth factor signaling pathway, which plays a key role in 
breast cancer and drug resistance27. Previous studies have reported 
epigenomic reprogramming of cancer cells following endocrine 
therapies28,29, but this study suggests that rare cells with chro-
matin features characteristic of resistant cancer cells exist before 
treatment. In the future, it will be interesting to further probe the 
potential role of spontaneous heterogeneity of chromatin states in 
untreated cells in the acquisition of drug resistance.

In our model of acquired resistance to tamoxifen, scRNA-seq 
and scChIP-seq revealed the existence of a fraction of cells within 
the sensitive tumor with transcriptional and epigenetic features 
common to resistant cells. Interestingly, the two approaches did 
not identify the same subset of genes, but revealed common gene 
signatures characteristic of a switch from luminal to basal cell iden-
tity. Such differences could highlight the poor sensitivity of current 
scRNA-seq approaches or indicate that a fraction of genes is poised 
for transcription, but not transcribed. Loss of repressive chromatin 
marks such as H3K27me3 could change the chromatin to a per-
missive state and might correspond to a priming event preceding 
changes in transcription. Altogether, our scChIP-seq system can 
probe the role of heterogeneity and dynamics of chromatin states 
within any complex biological system; in addition to cancer, it can 
be applied to other diseases and healthy systems, notably to study 
cellular differentiation and development.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41588-019-0424-9.
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Methods
Cell lines. Jurkat cells (T18-125; ATCC), an immortalized line of human T 
lymphocytes, and Ramos cells (CRL-1596; ATCC), an immortalized line of human 
B lymphocytes, were grown in Roswell Park Memorial Institute (RPMI) 1640 
medium (catalog no. 61870-010; Thermo Fisher Scientific) supplemented with 
10% heat-inactivated fetal bovine serum (catalog no. 16140071; Thermo Fisher 
Scientific) and 1% penicillin-streptomycin (catalog no. 15140122; Thermo Fisher 
Scientific). Mouse M300.19 cells (gift from B. Moser), an immortalized line of 
mouse pre-B lymphocytes, were grown in RPMI 1640 medium supplemented with 
10% fetal bovine serum (HyClone SH30070.03; Thermo Fisher Scientific), 1% 
penicillin-streptomycin, 1% Gibco l-glutamine (catalog no. 25030081; Thermo 
Fisher Scientific) and 5 × 10−5 M Gibco 2-mercaptoethanol (catalog no. 21985023; 
Thermo Fisher Scientific).

PDXs. Female Swiss nude mice were purchased from Charles River Laboratories 
and maintained under specific-pathogen-free conditions. Their care and housing 
were in accordance with institutional guidelines and the rules of the French Ethics 
Committee (project authorization no. 02163.02). A PDX model of luminal breast 
cancer (HBCx-22) was previously established at Institut Curie from untreated, 
early-stage luminal breast cancer with informed consent from the patient30. 
Acquisition of a resistant phenotype for a derivative of HBCx-22, HBCx-22-TamR, 
was previously established and maintained as described previously24. A PDX from 
a residual triple-negative breast cancer post-neoadjuvant chemotherapy (HBCx-
95) was previously established at Institut Curie with informed consent from the 
patient20,24. Mice with HBCx-95 xenografts (n = 6) were treated with capecitabine 
(Xeloda; Roche Laboratories) orally at a dose of 540 mg kg d−1, 5 d a week for 6 
weeks. Relative tumor volumes (mm3) were calculated as described previously31 
(Supplementary Fig. 9a). Mice with recurrent tumors were treated for a second 
round of capecitabine when the PDX reached a volume > 200 mm3 (mice nos. 35, 
40 and 33). Mouse no. 40 did not respond to capecitabine; the PDX specimen was 
extracted at 1,100 mm3 and tagged as HBCx-95-CapaR.

Before scChIP-seq, scRNA-seq and bulk ChIP-seq, PDXs were digested at 
37 °C for 2 h with a cocktail of collagenase I (catalog no. 11088793001; Roche) 
and hyaluronidase (catalog no. H3506; Sigma-Aldrich) as described previously32. 
Cells were further individualized at 37 °C using a cocktail of 0.25% trypsin-Versen 
(catalog no. 15040-033; Thermo Fisher Scientific), dispase II (catalog no. D4693; 
Sigma-Aldrich) and DNase I (catalog no. 11284932001; Roche). eBioscience red 
blood cell lysis buffer (catalog no. 00-4333-57; Thermo Fisher Scientific) was then 
added to degrade red blood cells. To increase the viability of the cell suspension, 
dead cells were removed using the Dead Cell Removal Kit (Miltenyi Biotec). Cells 
were resuspended in PBS/0.04% UltraPure BSA (catalog no. AM2616; Thermo 
Fisher Scientific).

scChIP-seq. The overall workflow is shown in Supplementary Fig. 1.

Microfluidics chips. Four microfluidics chips were used: (1) to compartmentalize 
single cells with lysis reagents and micrococcal nuclease in droplets; (2) to produce 
hydrogel beads; (3) to compartmentalize single hydrogel beads in droplets; and (4) 
for one-to-one fusion of droplets containing digested nucleosomes (from single 
lysed cells) with droplets containing single hydrogel beads (Supplementary Fig. 2). 
All chips were manufactured using soft photolithography in polydimethylsiloxane33 
(Sylgard) as described34. Masters were made using one layer of SU-8 photoresist 
(MicroChem). The list depth of the photoresist layer for device I was 40.8 ± 1 µm, 
for device II was 30.0 ± 1 µm and for device III was 34.0 ± 1 µm. For device IV, the 
list depth was 45.0 ± 1 µm and electrodes were prepared by melting a 51 In/32.5 
Bi/16.5 Sn alloy (Indium Corporation) into the electrode channels35. Microfluidics 
devices were treated the day of the experiment with 1% v/v 1H,1H,2H,2H-
perfluorodecyltrichlorosilane (catalog no. AB111155; abcr) in Novec HFE7100 
fluorinated oil (3M) to prevent droplets wetting the channel walls.

Microfluidics operations. Droplet formation, fusion and fluorescence analysis were 
performed on a dedicated droplet microfluidics station, similar to Mazutis et al.34. 
The continuous oil phase for all droplet microfluidics experiments was Novec 
HFE-7500 fluorinated oil (3M) containing 2% w/w 008-FluoroSurfactant (RAN 
Biotechnologies).

Cell compartmentalization and chromatin digestion. Cells were centrifuged (300g, 
5 min at 4 °C), labeled by 20 min incubation with 1 µM Calcein AM (catalog no. 
C3099; Thermo Fisher Scientific) and resuspended in cell suspension buffer, 
comprising DMEM/F12 (Thermo Fisher Scientific) supplemented with 30% Percoll 
(catalog no. P1644; Sigma-Aldrich), 0.1% Pluronic F-68 non-ionic surfactant 
(catalog no. 24040032; Thermo Fisher Scientific), 25 mM HEPES pH 7.4 (catalog 
no. 15630080; Thermo Fisher Scientific) and 50 mM NaCl. Cells were resuspended 
to give an average number of cells per droplets λ of 0.1, resulting in 90.48% of 
empty droplets, 9.05% of droplets containing one cell and only 0.46% containing 
two or more cells due to the Poisson distribution of the cells in droplets36. Overall, 
we determined experimentally that among non-empty droplets, 95.16% contained 
one cell and 4.84% contained two or more cells, close to the expected values 
(94.92 and 5.08%, respectively). The cells were co-flowed in a microfluidics chip 

(Supplementary Fig. 2) with digestion buffer containing lysis buffer (107.5 mM 
Tris-HCl pH 7.4, 322.5 mM NaCl, 2.15% Triton X-100, 0.215% deoxycholate and 
10.75 mM CaCl2), 2 µM Sulforhodamine B sodium salt (catalog no. S1402-5G; 
Sigma-Aldrich), 4 µM DY-405 (catalog no. 405-00; Dyomics), protease inhibitor 
cocktail and 0.2 U µl−1 micrococcal nuclease enzyme (catalog no. EN0181; Thermo 
Fisher Scientific). Droplets were produced by hydrodynamic flow focusing37 with a 
nozzle 25 µm wide, 40 µm deep and 40 µm long. The flow rates (150 µl h−1 for both 
aqueous phases, 850 µl h−1 for the continuous oil phase) were calibrated to produce 
45 pl droplets. The droplets were collected in a collection tube (1.5 ml Eppendorf 
tube filled with HFE-7500 fluorinated oil) and then incubated at 37 °C for 20 min.

Production of hydrogel beads carrying barcoded DNA adapters. Hydrogel beads 
carrying barcoded DNA adapters were produced by split-mix synthesis using a 
method similar to that described previously38,39. Briefly, polyethylene diacrylate 
(PEG-DA) hydrogel beads containing streptavidin acrylamide were produced; 
barcoded primers were added to the beads by split-and-pool synthesis using 
ligation. PEG-DA hydrogel beads were produced using the microfluidics device 
indicated in Supplementary Fig. 2, essentially as described by Zilionis et al.38. 
The 9 pl droplets were produced at a 4.5 kHz frequency and were exposed at 
200 mW cm−2 with a 365 nm ultraviolet light source (ac475-365; OmniCure) to 
trigger gel bead polymerization. Recovered gel beads were washed ten times with 
washing buffer (100 mM Tris pH 7.4, 0.1% v/v TWEEN 20). Twelve million PEG-
DA beads were incubated in a 500 µl final volume for 1 h at room temperature with 
50 µM of a photo-cleavable biotinylated double-stranded DNA oligonucleotide (see 
SEQ1 in Supplementary Table 4) and then distributed into a 96-well microplate, 
each well containing 5 µl at 5 µM of a double-stranded DNA with a specific first 
index (index 1), for split-and-pool synthesis by ligation using T7 DNA ligase 
(catalog no. M0318; New England Biolabs) according to the manufacturer’s 
instructions. At each round of split-and-pool, the hydrogel beads were pooled 
and washed as described38. Repeating this splitting and pooling process three 
times in total (adding three indexes) results in 963 combinations, which generates 
approximately 8.8 × 105 different barcodes. After adding the last index, the beads 
were pooled and a common double-stranded DNA oligonucleotide (SEQ2 in 
Supplementary Table 4) was ligated to the beads. Each bead carries on average 
approximately 5 × 107 copies of a unique barcode (see Supplementary Fig. 3 for 
quality controls of the single-cell barcodes).

Compartmentalization of hydrogel beads. The barcoded hydrogel beads were 
labeled by 30 min incubation with 10 µM Cy5-PEG3 biotin (catalog no. FP-
1M1220; Interchim) and washed with washing buffer (100 mM Tris pH 7.4, 0.1% 
v/v TWEEN 20), then suspended in bead mix (62.5 mM EGTA, 2 mM dNTPs, 
1 mM ATP, 0.5 µM Sulforhodamine B). Barcoded hydrogel beads were co-flowed 
using the microfluidics device indicated in Supplementary Fig. 2, with ligation mix 
(2× ligation buffer, 2 mM ATP, 1 µM Sulforhodamine B, 100 mM EGTA, 0.38 U µl−1 
Fast-Link DNA ligation Kit (catalog no. LK0750H; Lucigen) and EndRepair mix 
(4× ligation buffer, 4 mM deoxyribonucleotide triphosphate, 1 µM Sulforhodamine 
B, 0.08 U µl−1 Fast-Link DNA ligation Kit, 0.15× End-It End-Repair Kit (catalog 
no. ER0720; Lucigen)). The reinjection of close-packed barcoded hydrogel 
beads40 resulted in 65 ± 5% of the droplets containing a single bead. The flow 
rates (150 µl h−1 for the beads, 75 µl h−1 for both ligation and End-Repair buffers, 
150 µl h−1 for the continuous oil phase) were calibrated to produce 100 pl droplets.

Fusion of beads and cell droplets. Droplets containing fragmented chromatin and 
droplets containing barcoded hydrogel beads were reinjected into a microfluidics 
device with two aqueous inlets and one oil inlet for droplet fusion (Supplementary 
Fig. 2). The paired droplets were electrocoalesced41 using an electrical field 
generated by applying 100 V AC (square wave) at 5 kHz across electrodes 
embedded in the microfluidics device; 75 ± 5% of the droplets were correctly 
paired and fused.

Nucleosome barcoding in droplets. Fused droplets were collected and exposed 
for 90 s at 200 mW cm−2 with a 365 nm ultraviolet light source. The ligation was 
performed at 16 °C overnight. The emulsion was then broken by adding one 
volume of 80/20 v/v HFE-7500/1H,1H,2H,2H-perfluoro-1-octanol (catalog no. 
370533; Sigma-Aldrich). The aqueous phase containing barcoded nucleosomes was 
diluted by adding ten volumes of lysis dilution buffer (50 mM Tris-HCl pH 7.4, 1% 
Triton X-100, 0.1% deoxycholate, 37.5 mM EDTA, 37.5 mM EGTA, 262.5 mM NaCl 
and 1.25 mM CaCl2) and centrifuged for 10 min at 10,000g at 4 °C. The soluble 
aqueous phase was used for chromatin immunoprecipitation.

Immunoprecipitation of barcoded nucleosomes. Dynabeads Protein A magnetic 
particles (catalog no. 10001D; Thermo Fisher Scientific) were washed in blocking 
buffer comprising PBS supplemented with 0.5% TWEEN 20, 0.5% BSA fraction 
V and incubated for 4 h at 4 °C in 1 ml blocking buffer with 2 µl of anti-H3K4me3 
antibody (catalog no. 07-473; EMD Millipore) and 2.5 µl of anti-H3K27me3 
antibody (C36B11)(catalog no. 9733; Cell Signaling Technology). After incubation, 
the particles were suspended with the barcoded nucleosomes and incubated at 
4 °C overnight. Magnetic particles were washed as described previosuly19 and 
immediately processed to prepare the sequencing library.
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Sequencing library preparation and sequencing. Concatemers of barcodes were 
digested by PacI restriction enzyme (catalog no. R0547; New England Biolabs), 
following the manufacturer’s instructions. Immunoprecipitated chromatin was 
then treated with RNase A, DNase and protease-free (catalog no. EN0531; Thermo 
Fisher Scientific) and with Proteinase K (catalog no. EO0491; Thermo Fisher 
Scientific). DNA was eluted from the magnetic particles with one volume of 
elution buffer (1% SDS, 10 mM Tris-HCl pH 8, 600 mM NaCl and 10 mM EDTA). 
Eluted DNA was purified with 1× Agencourt AMPure XP beads (catalog no. 
A63881; Beckman Coulter) and eluted with RNase/DNase-free water. Barcoded 
nucleosomes were amplified using in vitro transcription with the MegaScript T7 
Transcription Kit (catalog no. AM1334; Thermo Fisher Scientific). The resulting 
amplified RNA was purified using 1× Agencourt RNAClean XP Kit (catalog no. 
A66514; Beckman Coulter) and reverse transcribed using SEQ4 (Supplementary 
Table 4). After RNA digestion, DNA was amplified by PCR using SEQ5 
(Supplementary Table 4 and Supplementary Fig. 4). The final product was size-
selected by gel electrophoresis; scChIP-seq libraries were sequenced on an NextSeq 
500 (Illumina) using Mid Output runs (150 cycles). Cycles were distributed as 
follows: 50 bp (read no. 1) were assigned for the genomic sequence and 100 bp 
(read no. 2) were assigned to the barcode. The first four cycles of read no. 2 were 
dark cycles to prevent low complexity failure during cluster identification.

Bulk ChIP-seq. The bulk ChIP-seq experiments were performed as described 
previously42 on 106 cells from cell suspensions obtained from HBCx-22, HBCx-22-
TamR, HBCx-95 and HBCx-95-CapaR using anti-H3K27me3 antibody; 2 ng of 
immunoprecipitated and input DNA were used to prepare the sequencing libraries 
using the Ovation Ultralow V2 DNA-Seq Library Preparation Kit (NuGEN) 
according to the manufacturer’s instructions. Bulk ChIP-seq libraries were 
sequenced on a HiSeq 2500 (Illumina) in rapid run mode SE50.

scRNA-seq. Approximately 3,000 cells from each cell suspension, HBCx-22, 
HBCx-22-TamR, HBCx-95 and HBCx-95-CapaR, were loaded on a Chromium 
Single Cell Controller Instrument (10x Genomics) according to the manufacturer’s 
instructions. Samples and libraries were prepared according to the manufacturer’s 
instructions. Libraries were sequenced on a HiSeq 2500 (Illumina) in rapid run 
mode, using paired-end 26–98 bp sequencing.

scChIP-seq data analysis. Sequencing data were analyzed with Python v.2.7.12 and 
R v.3.3.3.

Demultiplexing cellular barcodes. Barcodes were extracted from reads no. 2 by first 
searching for the constant 4-bp linkers found between the 20-mer indexes of the 
barcode allowing up to one mismatch in each linker (see Supplementary Fig. 3 
and Supplementary Table 5 for the barcode structure). If the correct linkers were 
identified, the three interspersed 20-mer indexes were extracted and concatenated 
together to form a 60-bp non-redundant barcode sequence. A library of all 884,736 
combinations of the three sets of 96 indices (963) was used to map the barcode 
sequences using the sensitive read mapper CUSHAW v.3.0.3 (ref. 43). Each set of 
indexes was error-correcting because it takes more than an edit distance of 3 to 
convert one index into another. Therefore, we set a total mismatch threshold of 
3 across the entire barcode, with two or fewer per index to avoid misassigning 
sequences to the wrong barcode ID. In a second, slower step, sequences that could 
not be mapped to the CUSHAW3 index library were split into their individual 
indexes and each index compared against the set of 96 possible indexes, allowing 
up to two mismatches in each individual index. Any sequences not assigned to a 
barcode ID by these two steps were discarded.

Alignment, filtering and normalization. Reads no. 1 were aligned to the mouse 
mm10 and human hg38 reference genomes using Bowtie v.1.2.2 (ref. 44) by keeping 
only reads having no more than one reportable alignment and two mismatches. 
Raw reads are distributed according to a bimodal distribution (Supplementary 
Figs. 7, 9 and 14), the lower peak most probably corresponding to droplets with 
barcoded beads but without cells18, and the right peak corresponding to droplets 
with cell + bead, thereby setting a read count cutoff to define barcodes associated 
to a cell. For subsequent analysis, we kept barcodes with a unique (post-PCR 
duplicate removal) read count above this cutoff. To remove PCR duplicates, for 
each barcode (that is, cell), all the reads falling in the same 150-bp window were 
stacked into one as reads possibly originating from PCR duplicates or from the 
same nucleosome. We generated a coverage matrix and metrics from these  
de-duplicated reads, referred to as ‘unique reads’ in the text.

For each cell, reads were binned in non-overlapping 50 kb bins for H3K27me3, 
known to accumulate over broad genomic regions, and 5 kb genomic bins for 
H3K4me3, known to accumulate in narrow peaks around TSSs, spanning the 
genome, to generate an n × m coverage matrix with n barcodes and m genomic 
bins. We combined coverage matrices for each of our four analyses from the 
following samples: (1) Ramos and Jurkat (Fig. 1); (2) mouse cells from HBCx-95 
and HBCx-95-CapaR (Fig. 2); (3) human cells from HBCx-95 and HBCx-95-
CapaR (Fig. 3); and (4) human cells from HBCx-22 and HBCx-22-TamR (Fig. 4).  
We first removed cells with a total number of unique reads within the upper 
percentile, considered as outliers, and filtered out genomic regions not represented 

in at least 1% of all cells. By principal component analysis, we could group cells 
independently of coverage only if cells had at least 1,600 unique reads per cell 
(Supplementary Fig. 10a). For all subsequent analyses, we excluded cells with  
lower coverage. Coverage matrices were then normalized by dividing counts by 
the total number of reads per cell and multiplying by the average number of reads 
across all cells.

Unsupervised clustering of scChIP-seq profiles. Normalized matrices were reduced 
by principal component analysis (n = 50 first components selected for further 
analysis). To improve the stability of our clustering approaches, we further 
limited our analysis to cells displaying a Pearson’s pairwise correlation score 
above a threshold t with at least 1% of cells. Threshold t was defined as the 
upper percentile of the Pearson’s pairwise correlation scores for a randomized 
dataset (see as an example Supplementary Fig. 10). We used consensus clustering 
(Bioconductor ConsensusClusterPlus v.1.46.0 package45) to examine the stability 
of the clusters and compute an item consensus score for each cell. We established 
consensus partitions of the dataset in k clusters (for k = 2, 3,…), on the basis 
of 1,000 resampling iterations (80% of cells) of hierarchical clustering, with 
Pearson’s dissimilarity as the distance metric and Ward’s method for linkage 
analysis. The optimal number of clusters (k) was chosen to maximize the intra-
cluster correlation score. Clustering results were visualized with t-distributed 
stochastic neighbor embedding (t-SNE) plots46. To visualize chromatin profiles of 
subpopulations, we aggregated reads of single cells within each cluster and created 
enrichment profiles using the R package Sushi v.1.12.0 (ref. 47).

Differential analysis of scChIP-seq profiles. To identify differentially enriched 
regions across single cells for a given cluster, we performed a non-parametric 
two-sided Wilcoxon rank-sum test comparing normalized counts from individual 
cells from one cluster versus all other cells. We tested for the null hypothesis 
that the distribution of normalized counts from the two compared groups have 
the same median, with a 95% confidence interval. We limited our analysis to 
the windows selected for unsupervised analysis described earlier. P values were 
corrected for multiple testing using the Benjamini–Hochberg procedure48. 
Genomic regions were considered as ‘enriched’ or ‘depleted’ for H3K27me3 or 
H3K4me3 if adjusted P values were lower than 0.01 and the absolute log2 fold 
change > 1. For H3K4me3, for each 5-kb bin, we identified genes with the closest 
TSS and computed the corresponding distance (0 in the case of bins directly 
overlapping TSS) using bedtools v.2.17 (ref. 49) and the reference annotation 
of the human transcriptome Gencode_hg38_v26, limited to protein_coding, 
antisense and long non-coding RNA genes. We applied hypergeometric tests to 
identify gene sets from the Molecular Signatures Database (MSigDB) v.5 (ref. 50) 
overrepresented within differentially enriched bins, correcting for multiple testing 
with the Benjamini–Hochberg procedure. For H3K27me3 scChIP-seq analysis, we 
used peak annotation from bulk ChIP-seq datasets to further annotate our 50-kb 
windows and corresponding genes. For each window, we kept for subsequent 
analyses (scRNA-seq comparison and gene enrichment analyses) genes with a TSS 
overlapped by a peak in any condition. For mouse cells, we interrogated the c5_GO 
and c7_hallmark gene lists (converting human gene names to mouse gene names); 
for human tumor cells, we interrogated the c2_curated and c7_hallmark gene lists.

Bulk ChIP-seq data analysis. Reads were aligned to the mouse mm10 and human 
hg38 reference genomes using Bowtie v.1.2.2; the tool bamcmp51 was used to 
separate human from mouse sequences. Subsequent analysis was performed as 
explained previously42. Only uniquely mapping reads were kept for the analysis; in 
addition, PCR duplicates were removed using Picard Tools (https://broadinstitute.
github.io/picard/). Data were binned in 5-kb (H3K4me3) or 50-kb (H3K27me3) 
consecutive genomic windows. For each window, log2 reads per million mapped 
reads (RPM) were computed.

scRNA-seq data analysis. Single-cell sequencing files were processed using the 
Cell Ranger Single Cell Software Suite v.1.3.1 to perform quality control, sample 
demultiplexing, barcode processing and single-cell 3′ gene counting (http://
software.10xgenomics.com/single-cell/overview/welcome) using the University 
of California Santa Cruz mouse (mm10) and human (hg19) transcriptome and 
genome with default parameters. A total of 2,728 cells with an average coverage 
of 30,166 reads per cell (1,564 human and 1,191 mouse cells) for HBCx-22, 1,746 
cells with an average coverage of 41,166 reads per cell (753 human and 1,013 
mouse cells) for HBCx-22-TamR, 1,184 cells with an average coverage of 160,583 
reads per cell (545 human and 647 mouse cells) for HBCx-95 and 2,087 cells with 
an average coverage of 38,345 reads per cell (861 human and 1,242 mouse cells) 
for HBCx-95-CapaR were analyzed. Further analysis was performed in R v.3.3.3 
using custom R scripts. Any cell with more than 10% of mitochondrial unique 
molecular identifier (UMI) counts was filtered out. We only kept cells with a total 
UMI count below 100,000 and total detected genes below 6,000 and over 1,000. 
We then only kept genes with at least one transcript in at least two cells. Using the 
R package scater v.1.2.0, scRNA-seq count matrices were normalized for coverage 
and transformed by the relative log expression method52. Using annotations from 
the R package ccRemover v.1.0.4 (ref. 53), we removed genes related to the cell cycle 
from subsequent clustering analyses to group cells according to cell identity and 
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not cell cycle-related phenomena. Barnes–Hut approximation to t-SNE was then 
performed on the n = 50 first principal components to visualize cells in a two-
dimensional space. Clusters were identified using consensus clustering as for the 
scChIP-seq analyses described earlier. We identified genes that were differentially 
expressed between clusters using edgeR GLM statistical models54. For stromal 
mouse cells, clusters were identified according to the differential expression 
of hallmark genes. For Fig. 4f, we studied the ten most significantly enriched 
pathways among overexpressed genes in cells from HBCx-22-TamR versus cells 
from HBCx-22. For each cell of the HBCx-22 and HBCx-22-TamR samples, 
we computed an average expression score for each of these ten pathways and 
performed hierarchical clustering.

Statistics. Correlation tests. To compare genome-wide the distribution of 
H3K27me3 and H3K4me3 enrichment obtained with the bulk versus single-cell 
approach, we estimated the association between enrichment values for the 50-kb 
or 5-kb windows, respectively, and tested for the null hypothesis of the association 
being null. We used the Pearson’s product moment correlation coefficient, in the 
range (−1, 1) with 0 indicating no association, and computed the associated  
P value using cor.test function in R.

Differential enrichment tests. To identify differentially enriched regions across 
single cells for a given cluster, we performed a non-parametric two-sided Wilcoxon 
rank-sum test comparing normalized counts from individual cells from one cluster 
versus all other cells. We tested for the null hypothesis that the distribution of 
normalized counts from the two compared groups have the same median, with 
a 95% confidence interval. P values were corrected for multiple testing using the 
Benjamini–Hochberg procedure48.

Pathway analysis. We used hypergeometric tests to identify gene sets from the 
MSigDB v.6.2, which are overrepresented among the lists of genes with a significant 
depletion in H3K27me3 (or enrichment in H3K4me3) over their TSS. For each 
gene list of the MSigDB, we used the phyper function in R to evaluate the overlap 
between the reference list and the list of significantly depleted/enriched genes 
(sample size dependent on the length of each gene list), correcting for multiple 
testing with the Benjamini–Hochberg procedure48.

Copy number profiles of bulk tumor cells. The R package HMMcopy v.1.16.0 
(ref. 55) was used to correct for copy number variation in non-treated versus 
resistant xenograft models. Reads from bulk input ChIP-seq samples were binned 
in 0.5 Mb non-overlapping regions spanning the genome. Regions with a deviation 
to the mean greater than n = 2 s.d. were removed for analysis (Supplementary  
Fig. 13a and 14b).

Reporting Summary. Further information on research design is available in the 
Nature Life Sciences Reporting Summary linked to this article.

Data availability
All sequencing files and processed count matrices were deposited with the Gene 
Expression Omnibus under accession number GSE117309.

Code availability
Codes are available from the GitHub repository (https://github.com/vallotlab/
scChIPseq).
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Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Datasets from our manuscript have been generated for the purpose of the study, we did not collect additional datasets.

Data analysis scChIP-seq and scRNA-seq sequencing data were analyzed using Python (v2.7.12) and R (v3.3.3). Specific R Bioconductor packages 
include ConsensusClusterPlus, Sushi, Scater, ccRemover and HMMcopy. Codes are available upon request. We also used Cushaw3, 
bowtie 1.2.2, bedtools 2.17, bamcmp, Picard tools and 10x Cell Ranger Single Cell Software Suite 1.3.1. 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The GEO accession number of the data produced in this manuscript is GSE117309. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE117309 with the token 
wniliuuuntelzcj



2

nature research  |  reporting sum
m

ary
O

ctober 2018

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No sample-size calculation was performed; the aim of our manuscript was to develop and validate a droplet-based scChIP-seq approach.

Data exclusions We excluded cells from analyses based on pre-established Quality Control metrics, detailed in Methodology questions (based on minimal and 
maximum coverage, and correlation score to other cells).

Replication We have validated the reproducibility of our single-cell chromatin profiling method by analyzing n=3 technical replicates for H3K4me3 and 
n=2 biological replicates, ie independent cell suspensions processed independently on our micro-fluidics system, for H3K27me3 (All attemps 
at replication were successful). We also confirmed that the clustering of scChIP-seq data is not driven by technical artifact (batch effect) but 
cell type-specific biological similarities.

Randomization Randomization is not relevant to our study as it aims at comparing chromatin and transcriptional states between a sensitive and a resistant 
tumor specimen.

Blinding No blinding was performed as the study aimed at comparing chromatin and transcriptional states between a sensitive and a resistant tumor 
specimen.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used anti-H3K4me3 [Millipore, # 07-473 , lot # 2664283, dilution 2/1000] 

anti-H3K27me3 (C36B11) [Cell Signaling Technology, # 9733, lot # 008, dilution 2.5/1000]

Validation - Anti-trimethyl-Histone H3 (Lys4) Antibody is a rabbit polyclonal antibody for detection of Histone H3 trimethylated at lysine 4. 
This highly specific and well published antibody has been validated in ChIP, DB, WB, PIA, ChIP-seq (Merck Millipore's website) 
- Tri-Methyl-Histone H3 (Lys27) (C36B11) Rabbit mAb detects endogenous levels of histone H3 only when tri-methylated on 
Lys27. The antibody does not cross-react with non-methylated, mono-methylated or di-methylated Lys27. In addition, the 
antibody does not cross-react with mono-methylated, di-methylated or tri-methylated histone H3 at Lys4, Lys9, Lys36 or Histone 
H4 at Lys20. (Cell Signaling Technology's website)

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) In the study, cell lines were used to demonstrate and benchmark the performance of the single-cell ChIP-seq technology. For 
this purpose, we used:  
- Human Jurkat cells (ATCC, T18-125) 
- Human Ramos cells (ATCC, CRL-1596) 
- Mouse M300.19 cells was a gift from B. Moser
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Authentication Human cell lines were obtained from ATCC and not authenticated. 

Mouse M300.19 cells were not authenticated.

Mycoplasma contamination The cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines
(See ICLAC register)

No commonly misidentified cell lines were used in the study.

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals 8- to 12-week-old female Swiss nude mice purchased from Charles River and maintained under specific pathogen-free 
conditions.

Wild animals The study did not involve wild animals.

Field-collected samples The study did not involve samples collected from the field.

Ethics oversight The care and housing of mice used in this study were in accordance with institutional guidelines and the rules of the French 
Ethics Committee (project authorization no. 02163.02).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants
Policy information about studies involving human research participants

Population characteristics Not applicable, study focuses on two patient samples which have been used to generate two patient-derived xenograft models.

Recruitment The two PDX models come from two patients of the Institut Curie hospital.

Ethics oversight We have obtained consent from all participants of the study

Note that full information on the approval of the study protocol must also be provided in the manuscript.

ChIP-seq
Data deposition

Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links 
May remain private before publication.

The GEO accession number of the data produced in this manuscript is GSE117309. 
The following secure token has been created to allow review of record GSE117309 while it remains in private status: 
wniliuuuntelzcj

Files in database submission - Raw sequencing files 
Jurkat-Ramos_scChIP_K27me3_R1.fastq.gz 
Jurkat-Ramos_scChIP_K27me3_R2.fastq.gz 
Jurkat-Ramos_scChIP_K4me3_R1.fastq.gz 
Jurkat-Ramos_scChIP_K4me3_R2.fastq.gz 
HBCx-95_scChIP_H3K27me3_R1.fastq.gz 
HBCx-95_scChIP_H3K27me3_R2.fastq.gz 
HBCx-95-CapaR_scChIP_H3K27me3_R1.fastq.gz 
HBCx-95-CapaR_scChIP_H3K27me3_R2.fastq.gz 
HBCx-22_scChIP_H3K27me3_R1.fastq.gz 
HBCx-22_scChIP_H3K27me3_R2.fastq.gz 
HBCx-22-TamR_scChIP_H3K27me3_R1.fastq.gz 
HBCx-22-TamR_scChIP_H3K27me3_R2.fastq.gz 
HBCx-95_scRNA.bam 
HBCx-95-CapaR_scRNA.bam 
HBCx-22_scRNA.bam 
HBCx-22-TamR_scRNA.bam 
 
- Processed data files 
CountTable_Jurkat_scChIP_K4me3.txt.gz 
CountTable_Ramos_scChIP_K4me3.txt.gz 
CountTable_Jurkat_scChIP_K27me3.txt.gz 
CountTable_Ramos_scChIP_K27me3.txt.gz 
CountTable_HBCx-95_scChIP_H3K27me3_hg38.txt.gz 
CountTable_HBCx-95-CapaR_scChIP_H3K27me3_hg38.txt.gz 
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CountTable_HBCx-95_scChIP_H3K27me3_mm10.txt.gz 
CountTable_HBCx-95-CapaR_scChIP_H3K27me3_mm10.txt.gz 
CountTable_HBCx-22_scChIP_H3K27me3_hg38.txt.gz 
CountTable_HBCx-22-TamR_scChIP_H3K27me3_hg38.txt.gz 
CountTable_HBCx-22_scChIP_H3K27me3_mm10.txt.gz 
CountTable_HBCx-22-TamR_scChIP_H3K27me3_mm10.txt.gz 
CountTable_HBCx-95_scRNA.tar 
CountTable_HBCx-95-CapaR_scRNA.tar 
CountTable_HBCx-22_scRNA.tar 
CountTable_HBCx-22-TamR_scRNA.tar 
 
- Supplementary files (barcode sequences used in scChIP-seq experiments) 
GSE117309_BarcodeLibrary_scChIPseq.fasta.gz

Genome browser session 
(e.g. UCSC)

- Genome browser session H3K4me3 and H3K27me3 Jurkat Ramos  
https://genome.ucsc.edu/s/kevin%20grosselin/Grosselin_Jurkat_Ramos_hg38 
 
- Genome browser session  H3K27me3 HBCx-95 model stromal cells 
https://genome.ucsc.edu/s/kevin%20grosselin/Grosselin_HBCx%2D95_mm10 
 
- Genome browser session  H3K27me3 HBCx-95 model tumor cells 
https://genome.ucsc.edu/s/kevin%20grosselin/Grosselin_HBCx%2D95_hg38 
 
- Genome browser session  H3K27me3 HBCx-22 model tumor cells 
https://genome.ucsc.edu/s/kevin%20grosselin/Grosselin_HBCx%2D22_hg38

Methodology

Replicates We have validated the reproducibility of our single-cell chromatin profiling method by analyzing n=3 technical replicates for 
H3K4me3 and n=2 biological replicates for H3K27me3 (r = 0.96 and 0.98 with p < 10e-15 respectively). We also confirmed 
that the clustering of scChIP-seq data is not driven by technical artifact (batch effect) but cell type-specific biological 
similarities.

Sequencing depth scChIP-seq libraries were sequenced on an Illumina NextSeq 500 MidOutput 150 cycles. Cycles were distributed as follows: 
50 bp (Read #1) were assigned for the genomic sequence and 100 bp (Read #2) were assigned to read the single-cell 
barcode sequence.  
Number of mapped reads refers to the number of reads aligned to the reference genome by keeping only reads having no 
more than one reportable alignments and 2 mismatches. 
On the other hand, number of uniquely mapped reads refers to the number of reads obtained after de-multiplexing of the 
single-cell barcodes and removal of duplicated reads (see Methods). 
 
- scChIP-seq H3K4me3 Jurkat Ramos 
Number of raw reads: 64,396,048 
Number of mapped reads (hg38): 42,659,092 
Number of uniquely mapped reads: 10,877,052 
 
- scChIP-seq H3K27me3 Jurkat Ramos 
Number of raw reads: 72,069,685 
Number of mapped reads (hg38): 47,123,836 
Number of uniquely mapped reads: 8,121,495 
 
- scChIP-seq H3K27me3 HBCx-95 
Number of raw reads: 151,963,813 
Number of mapped reads (mm10): 34,586,767 
Number of uniquely mapped reads (mm10): 5,187,802 
Number of mapped reads (hg38): 50,472,984 
Number of uniquely mapped reads (hg38): 8,715,197 
 
- scChIP-seq H3K27me3 HBCx-95-CapaR 
Number of raw reads: 204,907,172 
Number of mapped reads (mm10): 23,862,992 
Number of uniquely mapped reads (mm10): 3,739,207 
Number of mapped reads (hg38): 92,698,620 
Number of uniquely mapped reads (hg38): 15,333,344 
 
- scChIP-seq H3K27me3 HBCx-22 
Number of raw reads: 114,823,151 
Number of mapped reads (hg38): 45,798,204 
Number of uniquely mapped reads (hg38): 5,990,857 
 
- scChIP-seq H3K27me3 HBCx-22-TamR 
Number of raw reads: 109,501,758 
Number of mapped reads (hg38): 33,037,774 
Number of uniquely mapped reads (hg38): 2,844,194
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Antibodies anti-H3K4me3 [Millipore, # 07-473 , lot # 2664283, dilution 2/1000] 

anti-H3K27me3 (C36B11) [Cell Signaling Technology, # 9733, lot # 008, dilution 2.5/1000]

Peak calling parameters For single-cell ChIP-seq experiments, we do not perform peak calling, as there is no input sample. For control bulk specimen, 
we performed peak calling using MACS for H3K4me3 and Zerone for H3K27me3 with default parameters.

Data quality Data quality for scChIP-seq was assessed with QC metrics detailed in the Methods section: average coverage per cell with 
standard deviation, correlation with bulk profiles and ability to detect cell populations with clustering algorithms.

Software scChIP-seq datasets were analyzed with Python (v2.7.12) and R (v3.3.3). All thresholds and steps are detailed in the Method 
section of the manuscript. Codes available upon request. 
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